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The initial value problem of the nonlinear evolution, shoreline motion and flow
velocities of long waves climbing sloping beaches is solved analytically for different
initial waveforms. A major difficulty in earlier work utilizing hodograph-type
transformation when solving either boundary value or initial value problems has
been the specification of equivalent boundary or initial condition in the transformed
space. Here, in solving the initial value problem, the transformation is linearized
in space at t =0, then the full nonlinear transformation is used to solve the initial
value problem of the nonlinear shallow-water wave equations. A solution method is
presented to describe the most physically realistic initial waveforms and simplified
equations for the runup–rundown motions and shoreline velocities. This linearization
of the initial condition does not appear to affect the subsequent nonlinear evolution,
as shown through comparisons with earlier studies. Comparisons with runup results
from solutions of the boundary value problem suggest the same variation with the
runup laws. The methodology presented here appears simpler than earlier work as it
does not involve the numerical calculation of singular elliptic integrals.

1. Introduction
The nonlinear evolution of a wave over a sloping beach is theoretically and

numerically challenging due to the moving boundary singularity. Yet, it is important
to have a good estimate of the shoreline velocity and associated runup–rundown
motion, since they are crucial for the control of coastal flooding and planning of
coastal structures.

The major analytical advance in the nonlinear shallow-water wave equations on a
uniformly sloping beach was presented by Carrier & Greenspan (1958), known as the
Carrier–Greenspan transformation. They outlined a hodograph transformation using
the Riemann invariants of the hyperbolic system to reduce the nonlinear shallow-
water wave equations to a single second-order linear equation. Even though the
Carrier–Greenspan transformation is widely used, there are two major difficulties
with it which will be discussed in § 2. Tuck & Hwang (1972) suggested a slightly
different transformation which not only linearizes the nonlinear shallow-water wave
equations but also turns them into forms similar to their linear forms. In a recent
study, Carrier, Wu & Yeh (2003) developed the Green function representation of
the solution of the nonlinear shallow-water wave equations using the transformation
given by Tuck & Hwang (1972). They were able to evaluate the Green function
explicitly and obtained the complete elliptic integral of the first kind, which is highly
singular. Nonetheless, they solved the nonlinear propagation problem for arbitrary
initial waveform employing numerical integration.
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Figure 1. Definition sketch.

Pelinovsky (1995) developed analytical solutions to the nonlinear shallow-water
wave equations and discussed their relation to Carrier & Greenspan (1958). Synolakis
(1987) and Tadepalli & Synolakis (1994) considered a canonical problem: propagation
over a constant-depth segment connected to a uniformly sloping beach. While
Synolakis (1987) considered solitary wave propagation, Tadepalli & Synolakis (1994)
defined a new type of wave now commonly known as N-waves. Both studies
considered the linear shallow-water wave equation and provided analytical expressions
for the maximum runup. In addition, Synolakis (1987) solved the nonlinear canonical
boundary value problem for solitary wave propagation using the Carrier–Greenspan
transformation, specifying the boundary condition at the toe of the beach from the
equivalent linear problem. Synolakis (1987) used the linearized form of the hodograph
transformation for the spatial and temporal variables to specify the boundary
condition. Despite the linearization used to specify the boundary condition, the
subsequent analytical solution maintains the nonlinear effects as shown by Synolakis
(1987) and Titov & Synolakis (1995) through comparisons with laboratory data and
numerical predictions respectively.

In this paper, it is proposed that any initial waveform can first be represented in the
transform space using the linearized form of the Carrier–Greenspan transformation
for the spatial variable, then the nonlinear evolutions of these initial waveforms can be
directly evaluated. The integrals for the shoreline motion and velocity are simplified
substantially. This approach is applied to the Gaussian and leading-depression N-wave
initial forms presented by Carrier et al. (2003) and results are compared. The meth-
od is also extended to the different N-wave initial forms presented by Tadepalli &
Synolakis (1994) and some observations are made regarding the similar trends in the
maximum runup in the results of Tadepalli & Synolakis (1994) and the present study.

2. General formulation
The one-plus-one dimensional nonlinear shallow-water wave equations that describe

propagation over undisturbed water of variable depth h(x) (see figure 1) are

ut + uux + ηx = 0, [u(h + η)]x + ηt = 0, (2.1a, b)

where u(x, t) and η(x, t) are the horizontal depth-averaged velocity and free-
surface elevation respectively. The origin of the coordinate system is chosen at
the initial shoreline with x increasing in the seaward-direction and h̃(x̃) = x̃ tan β

where β is the beach angle from the horizontal. Using the reference length l̃, the

dimensionless variables are x = x̃/̃l, h = h̃/(̃l tan β), η = η̃/(̃l tan β), u = ũ/(g̃l̃ tan β)1/2,
and t = t̃(g̃ tan β/̃l)1/2 where g̃ is the gravitational acceleration. Carrier & Greenspan
(1958) outlined a hodograph transformation defining a new set of independent
variables (σ, λ) and reduced the nonlinear shallow-water wave equations to the
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single second-order linear equation

σφλλ − (σφσ )σ =0, (2.2)

using the Riemann invariants of the hyperbolic system (2.1a, b). The potential φ(σ, λ)
was introduced as u =φσ/σ . The Carrier–Greenspan transformation not only reduces
the nonlinear shallow-water wave equations to a second-order linear equation, but
also fixes the instantaneous shoreline to σ = 0 in (σ, λ)-space. Furthermore, a bounded
solution at the shoreline combined with given initial conditions at λ = 0, u = 0 and
a wave profile in (σ, λ)-space, η(σ, 0), implies the following solution in the transform
space:

φ(σ, λ) = −
∫ ∞

0

∫ ∞

0

1

ω
ξ 2Φ(ξ )J0(ωσ )J1(ωξ ) sin(ωλ) dω dξ, (2.3)

where Φ(σ ) = uλ(σ, 0) = 4ησ (σ, 0)/σ . Once φ(σ, λ) is known, the following hodograph
transformation can be used to obtain the solution in (x, t)-space:

u =
φσ

σ
, η = 1

4
φλ − 1

2
u2, x = 1

16
σ 2 − 1

4
φλ + 1

2
u2, t = u − 1

2
λ. (2.4a, b, c, d )

Carrier & Greenspan (1958) left their formulation here and considered two very
specific initial wave profiles, since generalization to realistic profiles was perhaps less
obvious. The difficulty lies in the derivation of an equivalent initial condition over
the transform (σ, λ)-space for a given initial wave profile in the physical (x, t)-space.
Even though the solution can be obtained in (σ, λ)-space using (2.4a, b) and can
be converted to the solution in (x, t)-space through (2.4 c, d), another problem with
this transformation is deriving a solution for a particular time t∗ or at a particular
location x∗. The former difficulty will be resolved in the present study, while the latter
was resolved by Synolakis (1987) seeking a solution either for given t∗ or at given x∗

using the Newton–Raphson iteration algorithms respectively:

λi+1 = λi − t∗ − t(λi)(
−uλ + 1

2

)
λi

or σi+1 = σi − x∗ − x(σi)(
− 1

8
σ + 1

4
φσλ − uuσ

)
σi

. (2.5a, b)

The difficulty in deriving an initial condition in (σ, λ)-space is overcome by simply
using the linearized form of the hodograph transformation for the spatial variable in
the definition of the initial condition. Once an initial value problem is specified in (x, t)-
space as η(x, 0), the linearized hodograph transformation x ∼= 1

16
σ 2 is used directly

to define the initial waveform in (σ, λ)-space, η( 1
16

σ 2, 0). Thus Φ(σ ) = 4ησ ( 1
16

σ 2, 0)/σ
is found, and φ(σ, λ) follows directly through a simple integration as in (2.3). Then,
it becomes possible to investigate any realistic initial waveform such as the Gaussian
and N-wave shapes employed in Carrier et al. (2003) and the isosceles and general
N-waves defined by Tadepalli & Synolakis (1994).

Given the initial waveform η(x, 0), the evolution of the water-surface elevation is
now given by

η(σ, λ) = 1
4
φλ − 1

2
u2 = −1

4

{∫ ∞

0

ξ 2Φ(ξ )

[∫ ∞

0

J0(ωσ )J1(ωξ ) cos(ωλ) dω

]
dξ

}
− 1

2

{∫ ∞

0

ξ 2Φ(ξ )

[∫ ∞

0

J1(ωσ )

σ
J1(ωξ ) sin(ωλ) dω

]
dξ

}2

, (2.6)

where Φ(σ ) = 4 ησ (σ, 0)/σ. Equation (2.6) can be integrated numerically to obtain
the water-surface elevation given t∗ or x∗.
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Since they are important for coastal planning, simple expressions for shoreline
runup–rundown motion and velocity are useful. Considering the shoreline to
correspond to σ = 0 in (σ, λ)-space, (2.6) reduces to the following equation for the
runup–rundown motion:

ηs(λ) = η(0, λ) = 1
4
φλ − 1

2
u2

s = −1

4

{∫ ∞

0

ξ 2Φ(ξ )

[∫ ∞

0

J1(ωξ ) cos(ωλ) dω

]
dξ

}
− 1

2

{∫ ∞

0

ξ 2Φ(ξ )

[∫ ∞

0

1
2
ωJ1(ωξ ) sin(ωλ) dω

]
dξ

}2

. (2.7)

Here the singularity of u = φσ/σ at σ = 0 is removed by considering
limσ→0 [J1(ωσ )/σ ] = 1

2
ω. Given that and taking λ = −τ 2,

∫ ∞

0

J1(ωξ ) cos(ωτ 2) dω =


cos(arcsin(τ 2/ξ ))/

√
ξ 2 − τ 4, τ 2 < ξ,

∞ or 0, τ 2 = ξ,

−ξ/[(τ 2 +
√

τ 4 − ξ 2)
√

τ 4 − ξ 2], τ 2 > ξ,

(2.8)

see Gradshteyn & Ryzhik (1994); integration by parts and Leibnitz’s formula lead to
the following simplified equation for the shoreline motion:

ηs(λ) = 1
4
φλ − 1

2
u2

s = −1

4

{∫ ∞

0

ξΦ(ξ ) dξ − τ 4Φ(0) −
∫ τ 2

0

τ 2
√

τ 4 − ξ 2
dΦ(ξ )

dξ
dξ

}

− 1

2

{
−τ 2Φ(0) − 1

2

∫ τ 2

0

2τ 4 − ξ 2√
τ 4 − ξ 2

dΦ(ξ )

dξ
dξ

}2

. (2.9)

Numerical evaluation of (2.9) provides runup–rundown motion of the shoreline.
Equation (2.9) is identical to (2.7), yet much simpler. It is obvious from (2.7) and (2.9)
that the maximum runup–minimum rundown are governed by the term corresponding
to 1

4
φλ since u =0 at these extreme values. In addition, shoreline velocity us is also

given explicitly in both equations. Note that the simplified form of (2.9),

ηs(λ) ∼=
1

4

∫ τ 2

0

τ 2
√

τ 4 − ξ 2
dΦ(ξ )

dξ
dξ − 1

2

{
−1

2

∫ τ 2

0

2τ 4 − ξ 2√
τ 4 − ξ 2

dΦ(ξ )

dξ
dξ

}2

, (2.10)

provides a good estimate of the shoreline motion and velocity for the cases where
Φ(0) and

∫ ∞
0

ξΦ(ξ ) dξ are small. Specific examples are provided in § 3.

3. Initial conditions
The detailed evolution, shoreline velocities and runup–rundown motions of different

initial wave profiles are examined here for initial profiles having zero initial velocity
everywhere. This is claimed to be a good representation of tectonic tsunami
generation; see Synolakis et al. (1997) and Carrier et al. (2003). The method in § 2 is
applied to the four cases presented by Carrier et al. (2003) and extreme values are
compared. The method is equally applicable to any other initial waveform such as the
different N-wave forms proposed by Tadepalli & Synolakis (1994). After validating
the method with the Carrier et al. (2003) results, it will be extended to solitary and
N-wave initial forms.
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Figure 2. Four initial waveforms presented by Carrier et al. (2003). The solid lines represent
proposed initial waveforms defined in (x, t)-space through (3.1) and (3.2). The nonlinear
solution represented by dots is obtained with the numerical integration of (2.3) using (2.4a–d)
and (2.5a) at t∗ =0. (a) The Gaussian initial waveform with H1 = 0.017, c1 = 4.0, and x1 = 1.69,
(b) the negative Gaussian initial waveform with H1 = 0.017, c1 = 4.0, and x1 = 1.69, (c) the
leading-depression N-wave initial form with H1 = 0.02, c1 = 3.5, x1 = 1.5625, H2 = 0.01, c2 = 3.5,
and x2 = 1.0, (d) the leading-depression N-wave initial form with H1 = 0.006, c1 = 0.4444,
x1 = 4.1209, H2 = 0.018, c2 = 4.0, and x2 = 1.6384.

3.1. Comparison with Carrier et al. (2003)

Carrier et al. (2003) considered four different initial wave profiles using exponential
functions, i.e. a Gaussian initial waveform

ηG(x, 0) = H1 exp(−c1(x − x1)
2), (3.1)

a negative Gaussian initial waveform which can be expressed as −ηG(x, t) and two
N-wave forms:

ηN (x, 0) = H1 exp(−c1(x − x1)
2) − H2 exp(−c2(x − x2)

2). (3.2)

The following initial profiles can be obtained in the transform space after using the
linearized form of the transformation for the spatial variable:

ηG(σ, 0) = H1 exp
(
− 1

256
c1

(
σ 2 − σ 2

1

)2)
, (3.3)

ηN (σ, 0) = H1 exp
(
− 1

256
c1

(
σ 2 − σ 2

1

)2) − H2 exp
(
− 1

256
c2

(
σ 2 − σ 2

2

)2)
, (3.4)

which respectively lead to

ΦG(σ ) = − 1
16

H1c1

(
σ 2 − σ 2

1

)
exp

(
− 1

256
c1

(
σ 2 − σ 2

1

)2)
, (3.5)

ΦN (σ ) = − 1
16

H1c1

(
σ 2 − σ 2

1

)
exp

(
− 1

256
c1

(
σ 2 − σ 2

1

)2)
+ 1

16
H2c2

(
σ 2 − σ 2

2

)
exp

(
− 1

256
c2

(
σ 2 − σ 2

2

)2)
. (3.6)

Figure 2 compares the initial waveforms defined in the physical space with those
resulting from the nonlinear solution. The linearized form of the spatial variable in the
definition of the initial waveforms gives a satisfactory comparison. Figure 3 presents
the evolution of these initial waveforms. Also, shoreline runup–rundown motions
and velocities calculated from (2.7) and (2.9) are compared (figure 4). As hoped,
both formulations produce identical results. Equation (2.10) also gives a satisfactory
comparison except for case (c) for which Φ(0) is not small. Table 1 compares flow
extrema between the present study and the results of Carrier et al. (2003). The num-
bers are identical.

Carrier et al. (2003) observed that the maximum runup height of a positive Gaussian
initial waveform is identical to the minimum rundown of a negative Gaussian wave.
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0 1 2 3 4 5
0

1
2

3
4

–0.06

–0.03

0

0.03

0.06
(a)

η

(b)

tx

(c)

η

tx

(d)

0 1 2 3 4 5
0

1
2

3
4

–0.06

–0.03

0

0.03

0.06

0 1 2 3 4 5
0

2
4

6
8

–0.06

–0.03

0

0.03

0.06

0 1 2 3 4 5
0

1
2

3
4

–0.06

–0.03

0

0.03

0.06

Figure 3. Spatial and temporal variations of the water surface elevations including shoreline
motions for the four initial waveforms provided by Carrier et al. (2003). The nonlinear solution
is obtained with the numerical integration of (2.3) using (2.4a–d) and (2.5a). Refer to the caption
of the figure 2 for the initial conditions.
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Figure 4. Temporal variations of the shoreline runup–rundown motions and velocities. The
solid line is based on the numerical integration of (2.7) while the dots and circles represent
the result from (2.9) and (2.10) respectively. Refer to the caption of the figure 2 for the initial
conditions. The results of (2.10) are not presented for case (c) since it does not provide the
good estimate of the quantities presented.

They concluded that “This coincidence may be interpreted as the extreme shoreline
location computed by fully nonlinear theory being identical to those predicted by
linear theory, whereas the shoreline trajectories and waveforms are different . . . .
Although their [cases (a) and (b)] run-up and run-down processes are different, their
extreme values in velocity u and momentum flux f [= (x + η)u2 per unit breadth]
turn out to be identical . . . . It is emphasized that the mirror images in the extreme
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Case (a) Case (b) Case (c) Case (d)

Initial wave heights 0.0170 −0.0170 0.0172 −0.0175
(0.0170) (−0.0170) (0.0173) (−0.0175)

Maximum runup 0.0470 0.0268 0.0583 0.0328
(−0.0470) (−0.0268) (−0.0583) (−0.0328)

Minimum rundown −0.0268 −0.0470 −0.0235 −0.0484
(0.0268) (0.0470) (0.0235) (0.0484)

Maximum shoreward −0.103 −0.213 −0.163 −0.225
velocity at x = −0.0259 at x = 0.0333 at x = −0.0166 at x = 0.0351

(−0.103 (−0.213 (−0.1634 (−0.225
at x = −0.0260) at x = 0.0333) at x = −0.0167) at x = 0.0348)

Maximum seaward 0.213 0.103 0.226 0.104
velocity at x =0.0121 at x = 0.0364 at x = 0.0060 at x = 0.0371

(0.213 (0.103 (0.226 (0.104
at x = 0.0122) at x = 0.0365) at x = 0.00666) at x = 0.0370)

Table 1. Comparison of some extreme values with those of Carrier et al. (2003) given in paren-
theses. Refer to the caption of the figure 2 for the cases presented here. Note that there is a
sign difference between the maximum runup–minimum rundown values, since Carrier et al.
(2003) provide penetration distances rather than runup–rundown values.

magnitudes of u, ψ [= η + 1
2
u2], and f do not relate to the well-known equivalence

in the maximum run-up penetration between the linear and nonlinear theories . . . .”
This observation can be explained with the method presented here: Consider initial
waveforms for leading-elevation, ηe(x, 0) and -depression, ηd(x, 0) N-waves. Given
ηe(x, 0) = − ηd(x, 0), then Φe(σ ) = − Φd(σ ) implies φe(σ, λ) = − φd(σ, λ) from (2.3);
u = φσ/σ will result in the extreme values of u for the leading-elevation and -depression
initial waveforms being the inverse of each, i.e. (ue)max = − (ud)min. Since u =0 at the
extreme values of η, φe(σ, λ) = − φd(σ, λ) will result in (ηe)max = − (ηd)min. However,
following the transformation to the physical variables through (2.4c, d) the spatial and
temporal variations of u will be different, as well as for η.

3.2. Solitary wave initial condition

A solitary wave which is initially located at x = xi with the wave amplitude H is given

by η(x, 0) = H sech2[γs(x − xi)] where γs =
√

3
4
H. In (σ, λ)-space it takes the form

η(σ, 0) = H sech2[ 1
16

γs(σ
2 − σ 2

i )]. Here xi
∼= 1

16
σ 2

i at λ = t = 0. The initial condition at

λ = 0 implies that Φ(σ ) = −Hγssech
2[ 1

16
γs(σ

2 − σ 2
i )] tanh[ 1

16
γs(σ

2 − σ 2
i )]. This is then

used in (2.3) together with (2.4a–d) to evaluate the entire flow field in (x, t)-space.

3.3. N-wave initial conditions

Tadepalli & Synolakis (1994) used a step-function travelling displacement at the
seafloor and studied the canonical problem for N-wave generation, propagation
and runup. They conjectured different types of initial N-wave profiles by considering
contemporaneous tsunami events such as in Nicaragua 1992 and East Java 1994 which
substantiated by anecdotal reports that tsunamis might appear as leading-depression
waves. Also, landslide-generated waves over a slope will generate a leading-depression
wave propagating shoreward and an offshore-propagating leading-elevation wave
(Liu, Lynett & Synolakis 2003). Here two of the definitions of Tadepalli & Synolakis
(1994) will be considered.
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3.3.1. Leading-depression isosceles N-wave initial condition

Tadepalli & Synolakis (1994) considered an N-wave class with leading-depression
and -elevation waves of the same height and at a constant separation distance, with
initial surface profile

η(x, 0) = 3
2

√
3H sech2[γi(x − xi)] tanh[γi(x − xi)] , γi =

3
2

√√
3
4
H, (3.7)

where xi defines the initial location of the wave and H is the initial wave height. In
(σ, λ)-space, the leading-depression isosceles N-wave initial profile takes the form

η(σ, 0) = 3
2

√
3H sech2

[
1
16

γi

(
σ 2 − σ 2

i

)]
tanh

[
1
16

γi

(
σ 2 − σ 2

i

)]
, (3.8)

where xi
∼= 1

16
σ 2

i at λ = t = 0. Equation (3.8) leads to

Φ(σ ) = 3
4

√
3Hγi

{
2 − cosh

[
1
8
γi

(
σ 2 − σ 2

i

)]}
sech4

[
1
16

γi

(
σ 2 − σ 2

i

)]
. (3.9)

Once Φ(σ ) is known, the entire flow field can be evaluated from equations (2.4a, b).
Back transformation to the physical space is straightforward using (2.4 c, d).

3.3.2. Generalized N-wave initial condition

Tadepalli & Synolakis (1994) considered another type of N-wave with a leading-
depression wave followed by an elevation wave, naming it a generalized N-wave, in
the form of

η(x, 0) = εH (x − x2)sech
2[γg(x − x1)], γg =

√
3
4
H, (3.10)

where ε is a scaling parameter. Following the proposed linearization, the initial wave
profile is given in the transform space as

η(σ, 0) = 1
16

εH
(
σ 2 − σ 2

2

)
sech2

[
1
16

γg

(
σ 2 − σ 2

1

)]
, (3.11)

which leads to the following equation for Φ(σ ):

Φ(σ ) = 1
16

εH
{
8 − γg

(
σ 2 − σ 2

2

)
tanh

[
1
16

γg

(
σ 2 − σ 2

1

)]}
sech2

[
1
16

γg

(
σ 2 − σ 2

1

)]
. (3.12)

Again, once Φ(σ ) is known, the entire flow field can be resolved.
Several cases are considered here and results are presented in figure 5 with examples

of solitary, leading-depression N-wave, and leading-elevation N-wave initial forms.
Reluctant to draw a conclusion from a few data points and noting that Synolakis
(1987) and Tadepalli & Synolakis (1994) solved the canonical problem using the linear
shallow-water wave equation with slightly different normalization and introducing
the initial waveforms over the constant-depth segment, the following observations are
made.

Synolakis (1987) derived an analytical expression for the maximum runup of a
solitary wave as R = 2.831

√
cot βH 5/4. Tadepalli & Synolakis (1994) showed that

for a leading-elevation isosceles N-wave R = 3.86
√

cotβH 5/4 and that for a leading-
depression generalized N-wave R = 2.831ε

√
cotβH 5/4[|x1 −x2 −0.366/γg| +0.618/γg].

Figure 5(j ) presents that maximum runup of solitary wave follows R ∼ H 5/4 as
analytically derived by Synolakis (1987). Figure 5(k) shows that maximum runup of
the leading-elevation isosceles N-waves also varies as H 5/4, as given in Tadepalli &
Synolakis (1994), and that maximum runup of the leading-depression isosceles N-
waves also varies with H 5/4. It should also noted here that because of the maximum
runup–minimum rundown invariance between the leading-elevation and -depression
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Figure 5. The runup–rundown characteristics of (a–c) solitary (H = 0.03, xi = 20), (d–f)
leading-depression (H = 0.03, xi = 15) and -elevation (ηe(x, 0) = − ηd (x, 0)) isosceles N-wave,
and (g–i) leading-depression (H =0.06, ε =0.2, x1 = 18, and x2 = 17) and -elevation (H = 0.06,
ε = 0.2, x1 = 24.20, and x2 = 25.20) generalized N-wave initial waveforms. The dash-dotted
and solid lines represent the quantities for the leading-depression and -elevation initial
waveforms, and the triangles and circles represent their maximum runup, respectively. (a, d, g)
The initial waveform resulting from nonlinear solution. (b, e, h) Temporal variation of the
shoreline motion. (c, f, i) Temporal variation of the shoreline velocity. (j) The maximum runup
of the solitary waves with H = 0.04, 0.035, 0.03, and 0.025 at xi = 20. (k) The maximum
runup of the leading-depression and -elevation isosceles N-waves with H = 0.04, 0.035, 0.03,
and 0.025 at xi = 15. (l) The maximum runup of the leading-depression generalized N-waves
with H = 0.08, 0.07, 0.06, and 0.05, ε = 0.2, x1 = 18, and x2 = 17 and the maximum runup of
leading-elevation generalized N-waves with ε =0.2, x1 − x2 = −1, and x1 = 23.24, 23.66, 24.20,
and 24.88 for H = 0.08, 0.07, 0.06, and 0.05 respectively. Both initial waveforms have the same
maximum amplitude at the same location with these parameters.

wave results, the same scaling is valid for minimum rundown values for both initial
waveforms. The runup variation on the leading wave height is approximately R ∼ H 3/4

for the leading-depression generalized N-wave, as in figure 5(l). The approximate
absolute upper bound for a leading-depression generalized N-wave presented by
Tadepalli & Synolakis (1994) also implies the same variation, since 1/γg ∼ H −1/2.
Moreover, it is observed that maximum runup of the leading-depression isosceles and
generalized N-waves is higher than that of leading-elevation N-waves as discussed in
Tadepalli & Synolakis (1994) and Carrier et al. (2003).

It should be added that the solution presented here cannot be evaluated when
the Jacobian of the transformation, J = xσ tλ − xλ tσ , breaks down. Even though the
transformation might become singular at certain points, the solution can still be
obtained at other points, since local integration can be performed without prior
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knowledge of the dependent variables, unlike in numerical methods. This feature is
discussed in detail in Synolakis (1987) and Carrier et al. (2003).

4. Conclusions
The difficulty with the Carrier–Greenspan transformation, namely deriving an

equivalent initial condition over the transform space for a given initial wave profile in
the physical space, is resolved. Physically realistic initial waveforms can be represented
in the transform space and evolution and the shoreline motion–velocity can be
estimated through numerical integration. The proposed analysis appears simpler than
in Carrier et al. (2003) and produces identical results. Unlike Carrier et al. (2003), this
analysis does not resort to solving singular elliptic integrals.

Liu, Synolakis & Yeh (1991) wrote “Interestingly, even though many assumptions
of the shallow-water wave theory are violated in the surf zone, certain quantitative
and qualitative comparisons of its predictions with the experimental or field data
often produce good agreement: this is puzzling.” Titov & Synolakis (1995) validated
this claim through detailed comparisons of numerical solutions of the nonlinear
shallow-water wave equations with laboratory data and the boundary value problem
solution of the nonlinear shallow-water wave equations of Synolakis (1987). Based on
the “quantitative and qualitative” prediction power of the nonlinear shallow-water
wave equations, the method outlined here may be useful to assess the impact of long
waves generated by seafloor displacements and to validate numerical codes. However,
the boundary value problem solution of Synolakis (1987) is more convenient when
comparing time series from laboratory data with analytical predictions. Moreover,
the present work shows that the initial value problem and boundary value problem
predictions converge to the same power law for the variation of the runup on the
leading wave height.
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